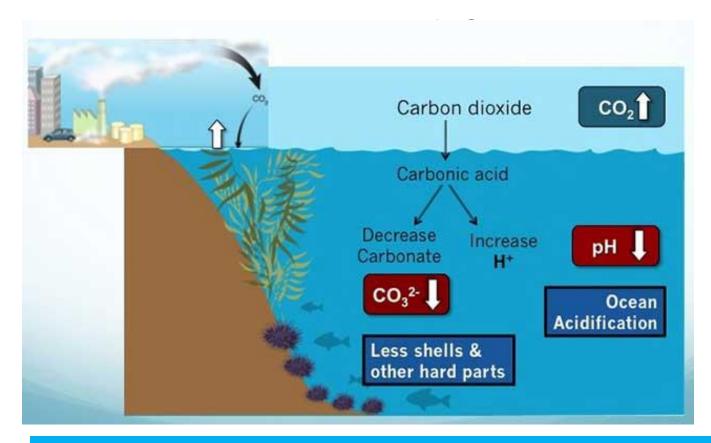
Ocean Acidification

Lailah Gifty Akita

Lailah.akita@gmail.com

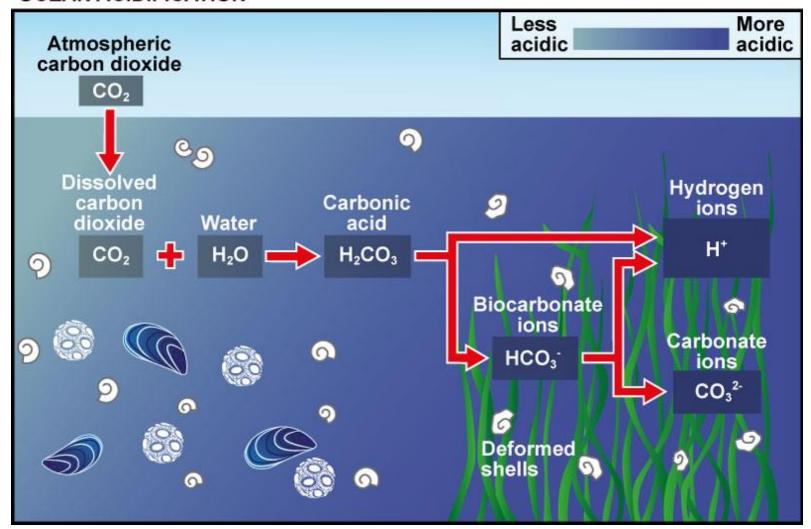

Ocean Chemistry

Ocean acidification is a change in sea water chemistry (lowering of pH).

 CO_2 reacts with seawater molecules (H_2O) to form carbonic acid (H_2CO_3)

The weak acid H₂CO₃ dissociates to form bicarbonate CO₃²-and hydrogen ions (H⁺). The ocean is basic due to its buffering capacity.

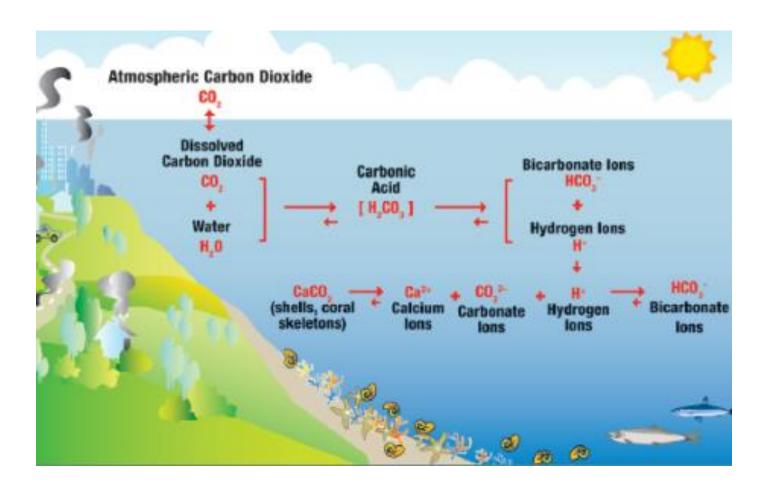
However, the **alarming rate** of release of CO_2 (-10 times faster compared to pre-industrial levels) in sea water changes the chemistry to **acidic** conditions.



Causes= increase carbon dioxide gases in atmosphere stimulated by human burning of fossil fuel, coals and deforestation.

The ocean absorption of increasing CO_2 = Increase hydrogen ions (pH < 7)

Increase hydrogen ions in seawater = **low pH (acidic)** and **decrease carbonate ions** (availability for calcifying marine species e.,g., clams, corals).


OCEAN ACIDIFICATION

Sea water pH = 8.1 (basic)

The lowering of seawater pH = Ocean acidification

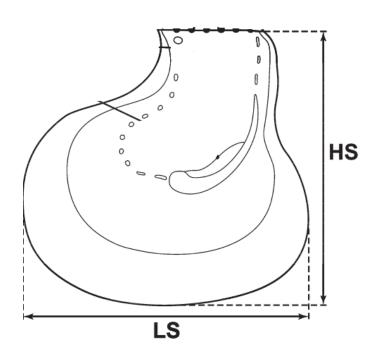
Ocean acidification

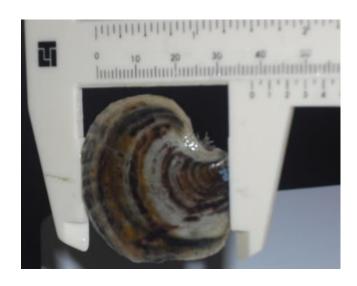
The biological impacts of ocean acidification: Affect the survival and slow growth of calcareous skeletons or shells for calcifying organisms.

Mesocom: manipulation of **pH levels** by **release of CO₂** for **culture of flat tree oysters** in laboratory of Bermuda Institute of Ocean Science.

Akita, L.G., Andersson, A (2015)

Field culture of flat tree oyster along natural pH gradient (acidified waters, 3 stations) in Mangrove Bay, Bermuda.


Flat Tree Oyster, Isognomon alatus



The acidified waters affect the **shell formation** of calcifying organism (e.g., oysters, calms).

Measurement



Shell measurement (length, height, cm) of flat tree oyster.

Weight

Determination of **buoyancy weight** of **flat tree oyster.**

Reading

- Akita, L.G., Andersson, A (2015): The effects of elevated carbon dioxide concentrations on the growth of flat tree oyster, *Isognomon alatus*. ISBN 978-3-659-58986-7. LAP Lambert Academic Publishing, 90 pp.
- Barton A, Hales B, Waldbusser GG, Langdon C, Feely RA (2012) The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: Implications for near-term ocean acidification effects. Limnol Oceanogr: 698–710.
- Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO₂ problem. Ann Rev Mar Sci 1: 169–19
- Hilmi N, Allemand D, Dupont S, Safa A, Haraldsson G, et al. . (2012) Towards improved socioeconomic assessments of ocean acidification's impacts. Mar Biol. In press.
- Narita D, Rehdanz K, Tol RSJ (2012) Economic costs of ocean acidification: a look into the impacts on global shellfish production. Clim Change: 1–15.
- Sabine CL, Feely RA, Gruber N, Key RM, Lee K, et al. (2004) The oceanic sink for anthropogenic CO₂. Science 305: 367–371