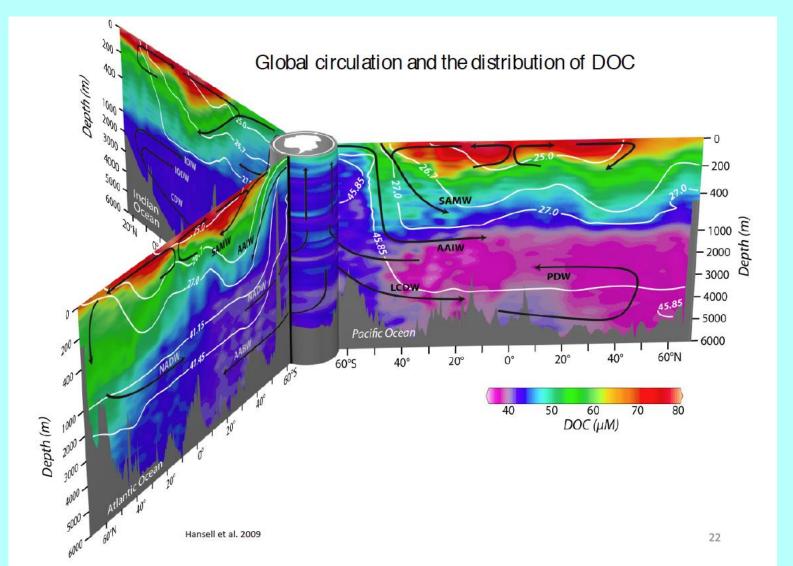


Organic Contaminants in the Marine Environment

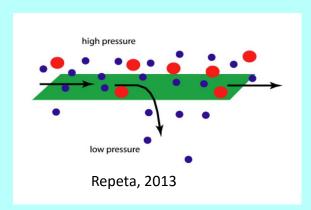

26 August 2015

Regional Maritime University

Overview

- Marine Dissolved Organic Matter
- Structure of Organic Molecules
- Phase Partitioning
- Molecular Transformations
- Case Study: Estrogens in Wastewater

Global Distributions of Dissolved Organic Carbon



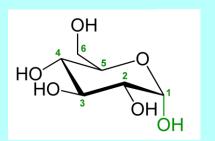
Marine Organic Matter

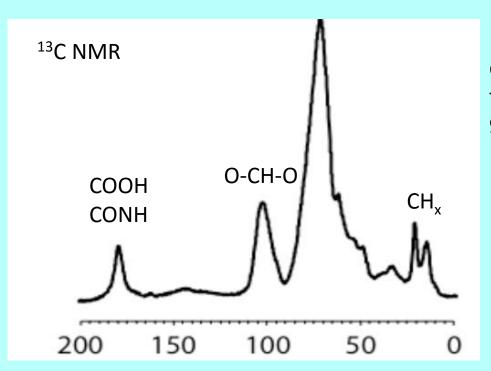
- Operationally defined:
 - High molecular weight organic matter
 - Low molecular weight organic matter

Ultrafiltration (> 1000 Da)

Solid phase extraction
 (< 1000 Da)

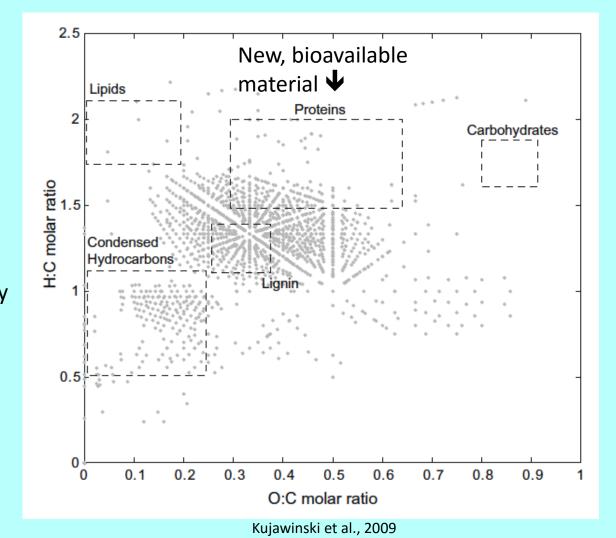
High Molecular Weight Organic Matter Composition

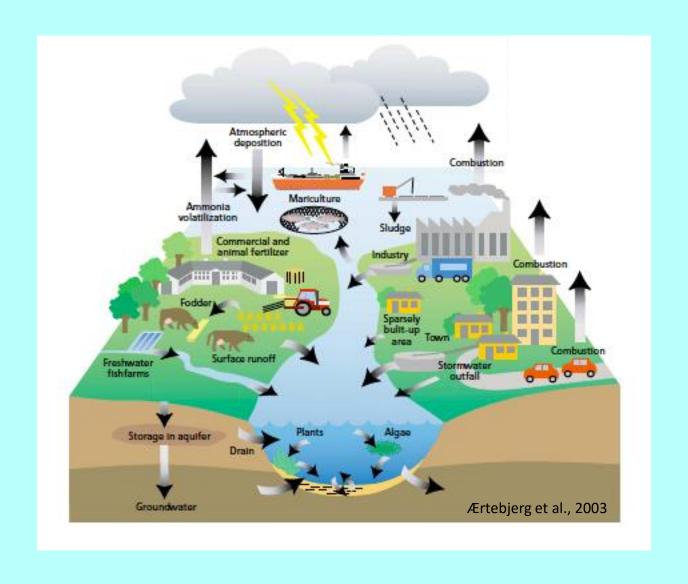

Surface, North Pacific Subtropical Gyre


HCOH

HCNH

Carboydrate Example:


Glucose


Major peaks are from carbohydrate functional groups (70-90%)

Low Molecular Weight Organic Matter Composition

Old, refractory material →

Sources of Contamination

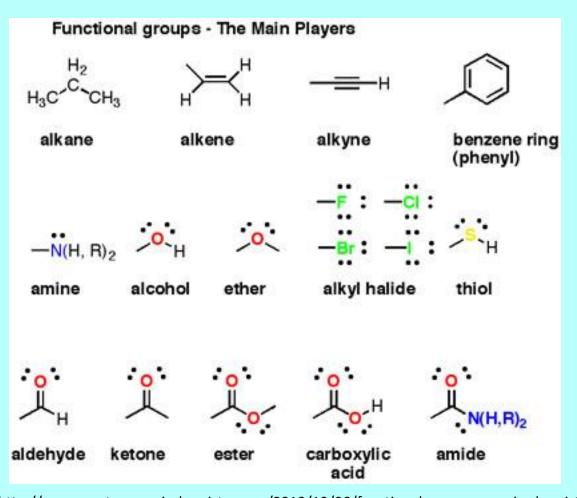
Organic Pollutants

DEET Insect repellent

Triclosan Anti-bacterial

Atrazine herbicide

Lindane pesticide


Polycyclic Aromatic Hydrocarbons (PAHs) Oil or incomplete combustion

Polychlorinated biphenyls (PCBs) Various industrial applications

Partitioning between Phases

Molecular Transformations

Structure: Functional Groups

http://www.masterorganicchemistry.com/2010/10/06/functional-groups-organic-chemistry/

Some Structural Considerations

Electronegativity / Polarity

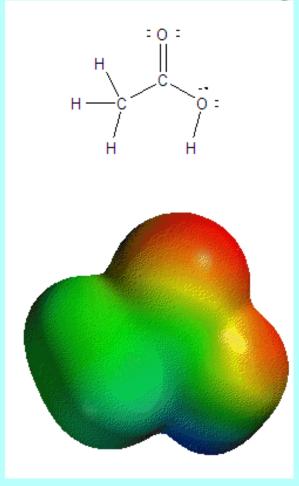
Spatial Arrangement

Delocalized Electrons (aromaticity, resonance)

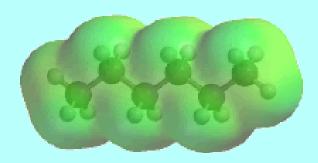
Electronegativity

1 H	î	Relative Electronegativities of the Elements														
2.1	2		be	elow 1	.0		2.	0-2.4				13	14	15	16	17
Li 1.0	Be 1.5	1.0-1.4				2.5-2.9 3.0-4.0				B 2.0	C 2.5	N 3.0	O 3.5	F 4.0		
Na 0.9	Mg 1.2	3	4	5	6	7	8	9	10	11	12	A1 1.5	Si 1.8	P 2.1	S 2.5	C1 3.0
K 0.8	Ca 1.0	Sc 1.3	Ti 1.5	V 1.6	Cr 1.6	Mn 1.5	Fe 1.8	Co 1.8	Ni 1.8	Cu 1.9	Zn 1.6	Ga 1.6	Ge 1.8	As 2.0	Se 2.4	Br 2.8
Rb 0.8	Sr 1.0	Y 1.2	Zr 1.4	Nb 1.6	Mo 1.8	Tc 1.9	Ru 2.2	Rh 2.2	Pd 2.2	Ag 1.9	Cd 1.7	In 1.7	Sn 1.8	Sb 1.9	Te 2.1	I 2.5
Cs	Ba	La*	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At
0.8	0.9	1.1	1.3	1.5	2.4	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.8	1.9	2.0	2.2
Fr	Ra	Ac [†] *Lanthanides: 1.1–1.3														

http://crescentok.com/staff/jaskew/isr/tigerchem/oxidation/numbers7.htm


[†]Actinides: 1.3-1.5

0.7


0.9

1.1

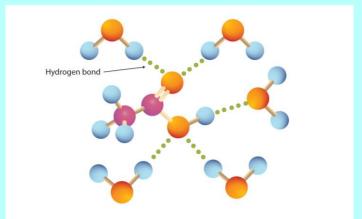
Polarity of Molecules Dictated by Electronegativity of Atoms

Acetic Acid

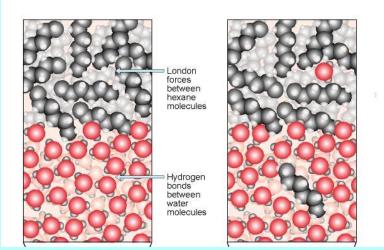
Hexane

Steric Arrangement

Delocalized Electrons



Types of Interactions


Dipole-induced dipole forces

Dipole-dipole forces

 H-bonding (electron donor-acceptor interaction)

http://2012books.lardbucket.org/books/introduction-to-chemistry-general-organic-and-biological/s18-04-physical-properties-of-carboxy.html

http://www.chem.fsu.edu/chemlab/chm1046course/solnprocess.html

Partitioning

air-water

octanol-water

organic matter-water

lipid-water

Octanol-Water Partitioning

$$K_{ow} = C_{io} / C_{iw}$$

Set of Compounds	log K _{iow} range c
Alkanes	3.0 to 6.3
Alkylbenzenes	2.1 to 5.5
Polycyclic aromatic hydrocarbons	3.3 to 6.3
Chlorobenzenes	2.9 to 5.8
Polychlorinated biphenyls	4.0 to 8.0
Polychlorinated dibenzodioxins	4.3 to 8.0
Phthalates	1.5 to 7.5
Aliphatic esters (RCOOR')	-0.3 to 2.8
Aliphatic ethers (R-O-R')	0.9 to 3.2
Aliphatic ketones (RCOR')	-0.2 to 3.1
Aliphatic amines (RNH ₂ , R-NHR')	-0.4 to 2.8
Aliphatic alcohols (R-OH)	-0.7 to 3.7
Aliphatic carboxylic acids (R-COOH)	-0.2 to 1.9

Estimating K_{ow}

$$\log K_{ow} = \sum n_k * f_k + \sum n_j * c_j + 0.23$$

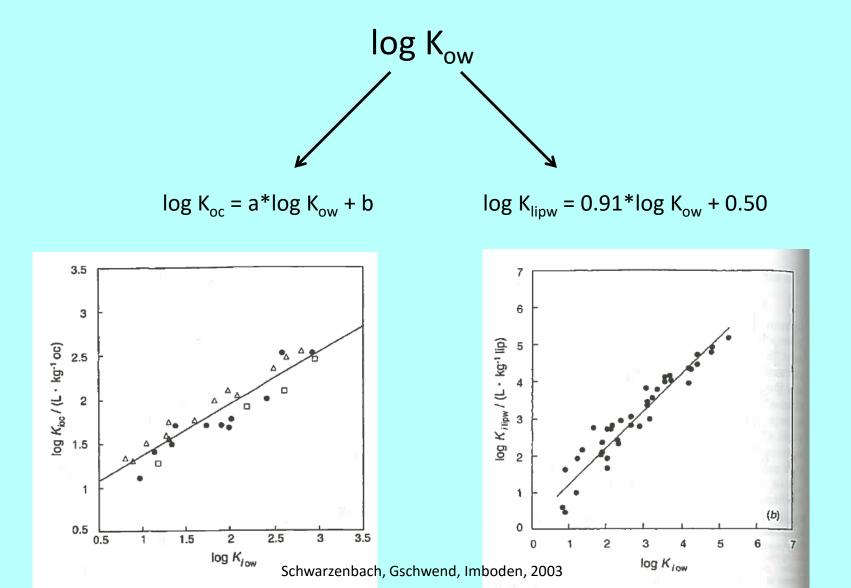
fragments corrections

$$\log K_{ow} = \log K_{ow} \text{ (related compound)} - \Sigma n_k * f_k + \Sigma n_k * f_k - \Sigma n_j * c_j + \Sigma n_j * c_j$$
fragments corrections
removed added removed added

Atom/Fragment	$f_{\mathbf{k}}$
Carbon -CH ₃ -CH ₂ CH< -CC+ -CC+ -CC+ -CC+ -CH ₂ -CC+ -CC+ -CC+ -CC+ -CC+ -CC+ -CC+ -CC	0.55 0.49 0.36 0.27 0.52 0.38 0.29

Schwarzenbach, Gschwend, Imboden, 2003

Estimating K_{ow} Example


$$H_3CO$$

$$methoxychlor$$
 $K_{ow} = 5.08$

	Fragment	f_{k}	X	n_{k}	=	Value
Starting	K _{ow}					5.08
Remove	-CH ₃	0.55	5	2		-1.10
	al-O-ar	-0.47	7	2		0.94
Add	ar-Cl	0.64		2		<u>1.28</u>
			log	K_{ow}	(est.)	6.20
					(exp.	6.20

DDT

Predict Other Phase Partitioning from Kow

Oil Partitioning is Complex

Analyte	MW-1 content					
Gas [†]						
Methane	82.5% (δ^{13} C = -57.5%; δ D = -187%)					
Ethane	8.3% ($\delta^{13}C = -31.5\%$; $\delta D = -147\%$)					
Propane	5.3% ($\delta^{13}C = -29.2\%$; $\delta D = -123\%$)					
Isobutane	$0.97\% \ (\delta^{13}C = -29.9\%)$					
<i>n</i> -butane	1.9% ($\delta^{13}C = -27.9\%$; $\delta D = -119\%$)					
Isopentane	0.52%					
<i>n</i> -pentane	0.52%					
Methane/ethane	9.9					
Methane/propane	15.5					
GOR (measured)	1,600 standard cubic feet per barrel					
GOR (estimated)	1,730 standard cubic feet per barrel §					
GOR						
Oil (select properties)						
Density	820 g L ⁻¹					
Gravity	40° API					
Carbon	86.6%					
Hydrogen	12.6%					
Nitrogen	0.38%					
Sulfur	0.39%					
Saturated hydrocarbons	74% (δ^{13} C = -27.9%)					
Aromatic hydrocarbons	16% (δ^{13} C = -26.5%)					
Polar hydrocarbons	10%					

Chemical Transformations

Hydrolysis

$$CH_3COOC_2H_5 + H_2O \rightarrow CH_3COO^- + HOCH_2CH_3 + H^+$$

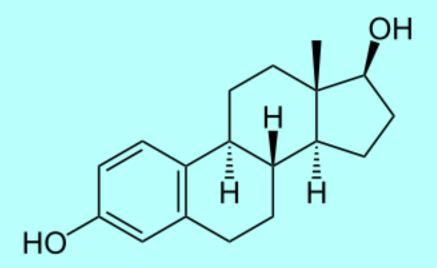
Redox Reactions

R-COOH + 2 H⁺ + 2 e⁻
$$\leftarrow$$
 R-CHO + H₂O

Photolysis

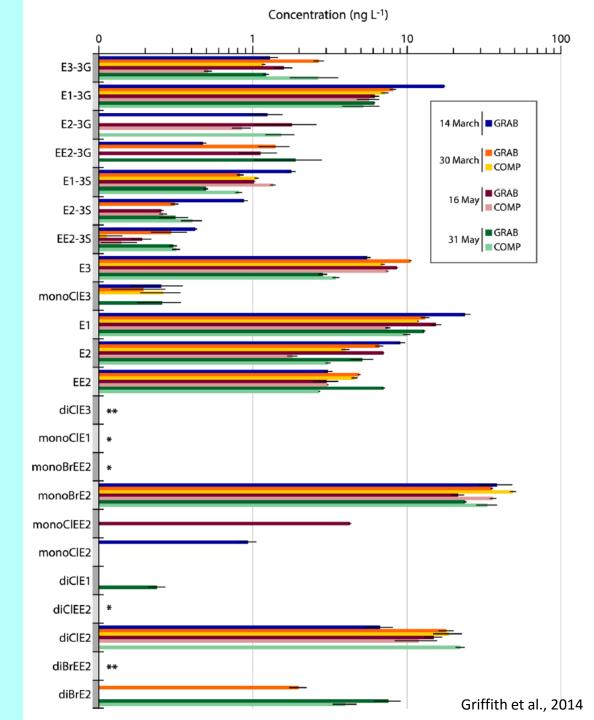
Biological Transformations

$$H_3CO \longrightarrow P \longrightarrow S$$
 $CH_2 - COOCH_2CH_3$
 $H_3CO \longrightarrow P \longrightarrow OCH_3$
 $COOCH_2CH_3$
 $COOCH_2CH_3$
 $COOCH_2CH_3$


Malathion (insecticide)

Reactivity: Estrogens

 Elevated levels of estrogens can disrupt reproductive function in vertebrates (fish)


Sources:

- Wastewater (human hormone, contraceptive drug)
- Livestock Waste (growth promoter)

Transformations of Estrogens

Estrogen Measurements

Findings

Measured free, conjugated, and halogenated estrogens in treated wastewater

Free estrogens were only 30-40% of total

- Implications for bioaccumulation
 - $-\log K_{ow} = 5.40$ (halogenated)
 - $-\log K_{ow} = 4.16$ (free)

Conclusions

 Structure of organic molecules dictates where they will partition

 Transformations of organic contaminants are essential to account for to fully understand their impact

Questions?