

Biotic Health Assessment of Kpong Reservoir in Ghana using Fish-Based Index of Biotic Integrity (FIBI)

Ali, F.A.*, Ofori-Danson, P.K., Nunoo, F.K.E. & Idowu, R.T.
*Corresponding author address: Dept. of Marine & Fisheries Sciences, University of Ghana.

INTRODUCTION

- Globally, aquatic ecosystems face increasing destruction with the biological components being the most impacted (Allan & Flecker, 1993).
- As a result, biological assemblages in aquatic ecosystems have been used as key indicators of degradation inherent in such systems (Frissell, 1993).
- Index of Biological Integrity (IBI) is the synthesis of varying information on the biotic components of the aquatic system and their relationship to anthropogenic perturbations.
- The Fish-based Index of Biotic Integrity (FIBI) utilizes fish as the biological indicator of degradation.

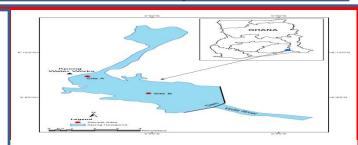


Fig. 1: Kpong Head pond, Ghana showing Sampling Stations

METHODOLOGY

- √ Fish sampled through experimental fishing
- ✓ Benthos, planktons sampled following Esenowo & Ogwumba (2010); Al-Hassan, (2015)
- ✓ Study duration 12 months

- ✓ Three (3) descriptors and twelve (12) metrics were adopted from Hugueny, et al., 1996, Karr et al., 1986; Hughes & Oberdorff, 1998, Hocutt et al., (1994) and Hay et al., (1996).
- Metric scoring criteria for the FIBI were based on the highest metric scores observed between the test site (present study areas) and reference site (Antwi & Ofori-Danson (1993)

- ✓ Traditional scoring method adopted thus: 5 = approximates reference site
 - 3 = deviate somewhat from reference site
 - 1 = deviate completely from reference site
- Total FIBI score used to classified biotic health using Karr, 1981 classification matrix.

Table 1: Metrics of fish community from original IBI by Karr (1981) vs adapted ones

Category	Metric	Original metrics (Karr, 1981)	Adapted metrics (Present study)
Species richness and composition	I	Number of species	Number of species
	п	Absent in Karr (1981) metrics	Number of fish families (following Noss (1992) and Witkowski, (1992))
	III	% number of Cichlid species	Retained
	IV	Number of intolerant species	Adapted to % number of Bagrid species (Kpong) Mockokid species (Oyun) respectively
	v	% number of darter species	Adapted to % number of Mormyrid species
	VI	% number of sucker species	Adapted to % number of benthic species
Trophic composition	VII	% number of individuals that are omnivores	% number of individuals that are omnivores
	VIII	% number of individuals that are piscivores	% number of individuals that are piscivores
	IX	% number of individuals that are invertivores	% number of individuals that are invertivores
	X	% number of individuals that are herbivores	% number of individuals that are herbivores
Fish abundance and condition	XI	Number of individuals	Number of individuals
	XII	% of individuals with anomalies	% of individuals with anomalies

RESULTS Table 2: Traditional IBI scoring criteria and scores for Kpong reservoir

Category	Metrics	*5 (best)	*3 (fair)	*1 (worst)	Present study result	Score
Species	1. Number of species	>21	7-15	<6	17	3
richness and	II. Number of fish families	>15	8-10	<5	5	3
composition	III. % number of Cichlid species	>35%	15-20%	<5%	77.7%	5
-	iv. % number of Bagrid species	>35%	15-25%	<10%	5.6%	1
	v. % number of Mormyrid species	> 13%	6-12%	< 5%	8.7%	1
	vi. % number of benthic species	>51.5%	21-50%	<20%	52.94%	5
composition	vii. % number of individuals that are	>25%	10-20%	< 5%	15.8	3
	viii. % number of individuals that are	>30%	10-25%	< 5%	12.1	3
	ix. % number of individuals that are invertivores	>17%	6-12%	< 3%	6.6%	3
	x. % number of individuals that are herbivores	>25%	10-20%	< 5%	65.7%	5
Fish	xi. Number of individuals	>1850	1001-	< 1000	1415	3
abundance and condition	xII. % of individuals with anomalies	<50	1500 51-99	>100	45	5
Total			t		1	42

Table 3: Karr (1981) Index score classification

Class	Index No.		
Excellent	57-60		
Excellent to Good (E-G)	53-56		
Good (G)	48-52		
Good to Fair (G-F)	45-47		
Fair (F)	39-44		
Fair to Poor	36-38		
Poor (P)	28-35		
Poor to Very Poor (P-VP)	24-27		
Very Poor (VP)	≤ 23		

Discussion

- The descriptor for species richness and composition recorded the highest cumulative FIBI score of 18, trophic interaction recorded 14 while the least was fish abundance and condition with 8
- Kpong reservoir recorded reduced percentages invertivores and piscivores vs reference site indicative of reduced biotic health (Fausch et al., (1990)

Conclusion

- Kpong reservoir demonstrated distinct change in trophic composition vs reference site
- Changes in trophic composition could be as a result of poor management arising from anthropogenic perturbations (Karr et al., (1986) as seen in the persistent algal blanket at the reservoir
- The reservoir total calculated FIBI score of 42 placed its biotic health as FAIR following Karr, (1981) classification matrix.

Recommendations

- The breadth of the sensitivity of the IBI to a variety of types of disturbances should be tested by modifying the Index to cover other disturbances like organophosphates and adapting the outcome to general usage if successful.
- Regular nutrient control should be strictly adhered to at the reservoir through denitrification and restoration processes to forestall the advent of full blown eutrophication.

References

Alhassan, E. H. (2015) Seasonal variations in phytoplankton diversity in the Bui dam area of the Black Volta in Ghana during the pre- and post-impoundment periods. *Revista de Biologia Tropical*. 63(1): 13-22. Esenowo, I. K., & Ugwumba, A. A. A. (2010) Composition and Abundance of Macrobenthos in Majidun River, Ikorordu Lagos State, Nigeria. *Research Journal of Biological Sciences*, 5 (8), 556-560. Hugueny B., Camara, S., Samoura, B. & Magassouba M. (1996) Applying an index of biotic integrity based on fish assemblages in a West African river. *Hydrobiologia*, 331, 71–78. Karr, J. R. (1987) Biological monitoring and environmental assessment: a conceptual framework. *Environmental Management*, 11 (2), 249-256.