OSTRACODA AS PALAEO-ENVIRONMENT INDICATORS

Akita, L.G.,¹ Frenzel, P.,² Haberzettl, T.,² Kasper, T.² Wang, J.,³ Peng, P.,³

¹University of Ghana ²Friedrich-Schiller-Universität Jena,Germany ³Chinese Academy of Sciences, Beijing, China

Coastal Ocean Environment Summer School in Ghana, 30th July to 5 August 2018. Venue: University of Ghana Organizers: University of Michigan-University of Ghana

Outline

Background

Theme I: Ecology

Theme II: Palaeoecology

Summary

References

Background: Environmental change

Aquatic ecosystems

Uniformitarianism

Charles Lyell (1797-1875) Scottish geologist and also botanist Principles of Geology (1830-33)

Presented idea of **uniformitarianism** to propose that **processes at work today** have operated over the immense span of geological time but that the rates may have changed

Archibald Geikie (1835-1924) Scottish Geologist

Coined the phrase "The present is the key to the past"

Important to distinguish between substantive uniformitarianism (rates of processes are invariant) and methodological uniformitarianism (processes are invariant).

Palaeoecology

Palaeoecology is the study of the ecology of the past

Important and critical role for palaeoecology.

The Geological Record of Ecological Dynamics – Understanding the Biotic Effects of Future Environmental Change (Flessa & Jackson 2005)

Bioindication

Environmental gradient

Assemblage

Palaeoecology

Fossil association ———— Palaeoenvironmental gradient

Why ostracods?

Frenzel et al... 2006

Video: P. Frenzel & F. Viehberg

- Seed shrimp (0.3 3.0 mm)
- Species-specific sensitivity
- Long fossil record

Ostracoda as indicators of past environment

- Class of Crustacea 'Seed Shrimp'
- Live in marine and non-marine aquatic habitats (e.g. Horne et al. 2002)
- Indicators of (palaeo)environmental parameters (e.g., Holmes & Chivas, 2002; Park & Smith 2003)
- Monitoring of recent freshwater conditions (e.g., Külköylüoğlu, 2004)

Aims :

Ecology of ostracodsReconstruction of past aquatic environments

Photo: P. Frenzel

Sediment sampling shallow waters

Sampling lake sediments

Laboratory work

63 μm 200 μm

- All ostracods picked from dried residues
- Identification and counting

Statistical Analyses

Taxonomic analysis

e.g., Meisch 2000; Wrozyna et al. 2009

Multivariate analyses

e.g., PAST, PRIMER 6, CANOCO 5

Ostracod-based transfer function

e.g., Frenzel et al. 2010; Peng et al. 2014

Ecological data

Method	Date / samples	Aquatic ecosystems	Environmental variables
Random	2009 = 8	Lakes $(n = 29)$	Conductivity
Sampling	2010 = 2	Rivers $(n = 13)$	Temperature
	2011 = 35	Estuary $(n = 10)$	рН
Gears:	2012 = 21	Lagoons $(n = 8)$	O ₂
Box corer		Ponds $(n = 3)$	Alkalinity
Hand-net		Spring $(n = 3)$	Water depth
			Sediment type*
		66 samples	

Conductivity correlates with species distribution

Recent ecology of Tibetan Ostracoda: Akita et al. 2016

Conclusions

Indicator species: distinct water body and water depth

Conductivity is the best environmental parameter

Name	Explains % (Contribution %	pseudo-F	Р	P(adj)
Conductivity	21	25.6	9.8	0.001	0.008
Habitats	9	11	4.6	0.003	0.024

Ostracoda are sensitive bioindicators

... memory of lake history

Sediment core processing

 Sediment Core sampled in 1cm intervals Standard Sieves 63 µm and 200 µm

• Wet sieved with distilled water

Example:ostracods as environmental indicators

Conclusions

Ostracod abundance changes with lake productivity
Ostracod dominance detects lake level changes via salinity tolerance

Climate change causes lake level changes

Monsoon climate influences water levels of closed lakes

- Ostracods (small crustaceans) lives in all types of waterbodies
- Changes in ostracod associations reflect changing aquatic environments (fresh to marine, shallow water to deep water)
- Understanding of historical climate and environmental changes

References

- An, Z. S., J. E. Kutzbach, W. L. Prell & S. C. Porter, 2001. Evolution of Asian monsoons and phased uplift of the Himalayan Tibetan plateau since Late Miocene times. Nature 411(6833):62-66
- Chellaney, B., 2011. Water: Asia's New Battleground. Georgetown University Press
- Holmes, J.A. & Chivas, A.R., 2002. The Ostracoda: Applications in Quaternary Research. American Geophysical Union, p. 313.
- Horne, D.J., Cohen A. & Martens, K., 2002. Taxonomy, Morphology and Biology of Quaternary and Living Ostracoda. In: Holmes, J. A. & A. Chivas (eds) The Ostracoda: Applications in Quaternary Research. vol Geophysical Monograph 131. American Geophysical Union, Washington, DC, 5–36
- Külköylüoğlu, O., 2004. On the usage of ostracods (Crustacea) as bioindicator species in different aquatic habitats in the Bolu region, Turkey. Ecol Indicators 4(2):139-147
- Immerzeel, W. W. & M. F. P. Bierkens, 2010. Asian Water Towers: More on Monsoons Response. Science 330(6004):585-585.
- Park,L.E. & Smith, A.J. (eds) 2003. Bridging the gap: Trends in the ostracode biological and geological sciences. The Paleontological Society, Yale
- Zhuang, Q., J. He, Y. Lu, L. Ji, J. Xiao & T. Luo, 2010. Carbon dynamics of terrestrial ecosystems on the Tibetan Plateau during the 20th century: an analysis with a process-based biogeochemical model. Global Ecol Biogeogr 19(5):649-662 doi:10.1111/j.1466-8238.2010.00559.x.
- Wei, Y. & Y. Fang, 2013. Spatio-temporal characteristics of global warming in the Tibetan Plateau during the last 50 years based on a generalised temperature zone-elevation model. PloS one 8(4):e60044 doi:10.1371/journal.pone.0060044