Marine Biogeochemistry 1: The chemical constituents of seawater

> Winn Johnson 30 July 2018 COESSING at University of Ghana

Seawater Chemistry Supports:

• ~50% O₂ production

• Absorbed ~25% CO₂ produced by humans

• 70-100 million tons of fish caught each year

Heading Out to Sea

Zoe Sandwith

Sampling the Ocean

In the Lab

Krista Longnecker

Chemical Constituents of Seawater

- Salts
- Carbonate system
- Nutrients
- Trace Metals
- Organic Matter
- Gases

Salts

- Density
- Freezing point
- Ionic strength
- Complexes with other ions
- Analytical challenges

Salt in the Ocean

Sources and Sinks of Chemical Constituents

Emerson & Hedges, 2008

Residence Time

Assume steady state: inputs = outputs

Residence Time (years) = ocean inventory (mol) / river inflow rate (mol y⁻¹) or τ = reservoir / input or output

Residence Time of Water = $1.35 \times 10^{18} \text{ m}^3 / 3.5 \times 10^{13} \text{ m}^3 \text{ y}^{-1} = 40,000 \text{ years}$

Residence Time of Na⁺ = 647 x 10^{18} moles / 8.1 x 10^{12} = 80 x 10^{6} years

Residence Time of $Cl^{-} = 753 \times 10^{18}$ moles / 7.7 x $10^{12} = 98 \times 10^{6}$ years

These ions reside in the ocean ~3000 times longer than the water

Evaporation and Precipitation Drive Sea Surface Salinity

Global Sea Surface Salinity

Emerson & Hedges, 2008

Section View of Salinity

www.ewoce.org

Chemical Constituents of Seawater

- Salts
- Carbonate system
- Nutrients
- Trace Metals
- Organic Matter
- Gases

Carbon Cycle

https://biologydictionary.net/carbon-cycle-reservoirs/

Carbonate System: Ocean Storage of Carbon

As Atmospheric CO₂ Increases Ocean Chemistry Responds

Ocean Acidification

 $CO_2 + H_2O \neq H_2CO_3$

 $H_2CO_3 \neq HCO_3^- + H^+$

 $HCO_3^- \neq CO_3^{2-} + H^+$

Ocean Acidification Can Impact Ocean Life

			Response to increasing CO ₂				
Physiological response	Major group	Species studied	a	b	с	d	
Calcification							
	Coccolithophores ¹	4	2	1	1	1	
F	nktonic Foraminifera	2	2	-	-	-	
	Molluscs	4	4	-	-	-	
	Echinoderms ¹	3	2	1	-	-	
	Tropical corals	11	11	-	-	-	
	Coralline red algae	1	1	-	-	-	
Photosynthesis ²							
	Coccolithophores ³	2	-	2	2	-	
	Prokaryotes	2	-	-	1	-	
	Seagrasses	5	-	-	-	-	
Nitrogen Fixation	l						
	Cyanobacteria	1	-	1	-	-	
Reproduction							
	Molluscs	4	4	-	-	-	
	Echinoderms	1	1	-	-	-	

 $CaCO_3 \rightarrow Ca^{2+} + CO_3^{2-}$

1) Increased calcification had substantial physiological cost; 2) Strong interactive effects with nutrient and trace metal availability, light, and temperature; 3) Under nutrient replete conditions. Doney et al., 2009

Oysters

-affects development of oysters

-already a problem on Northwest Coast of U.S. Three examples of damage to oyster larvae from ocean water acidity and low available carbonate, compared with healthy larvae on left. Micrograph by OSU

Chemical Constituents of Seawater

- Salts
- Carbonate system
- Nutrients
- Trace Metals
- Organic Matter
- Gases

Nitrogen vs. Phosphorus Limitation

Nitrogen Cycle

https://wordsinmocean.com/2012/09/18/challenger-2012-selectedkeynote-lectures-phyllis-lam-max-planck-institute-microbial-nitrogencycling-in-oxygen-minimum-zones/

Phosphorus Cycle

Increased Inputs of Nutrients: Eutrophication

Harmful Algal Blooms

- Toxins
 - Shellfish poisoning
 - Fish kills
- Hypoxia
 - Blooms drawdown
 oxygen so quickly that an
 area becomes anoxic
 driving organisms away
 or killing them

Pseudo-nitzschia australis. (J. Rines)

A Noctiluca bloom in Union Bay, British Columbia. (Lisa M. Holm)

Nitrogen Pollution to the Chesapeake Bay

By Sector

* 1% NATURAL AIR POLLUTION

December 2012

¹ AGRICULTURAL EMISSIONS OF AIR POLLUTION

CHESAPEAKE BAY FOUNDATION Saving a National Treasure

cbf.org

² ASSUMING THAT ROUGHLY 40% OF TOTAL STORMWATER NITROGEN COMES FROM THE AIR

CHESAPEAKE BAY **RECORD DEAD ZONE**

AUGUST 2005

Chemical Constituents of Seawater

- Salts
- Carbonate system
- Nutrients
- Trace Metals
- Organic Matter
- Gases

Trace Metals

• Micronutrients

• Iron can limit nitrogen fixation

• Human contamination

Trace Metal Profiles

1. Conservative

3. Particle-scavenged

2. Nutrient-like Profile

Also hydrothermal sources of metals: iron coming off a hydrothermal vent on the mid-Atlantic ridge

Human Contributions to Trace Metal Concentrations also Detectable: Higher Concentrations of Lead in North Atlantic Deepwater

Chemical Constituents of Seawater

- Salts
- Carbonate system
- Nutrients
- Trace Metals
- Organic Matter
- Gases

Marine Organic Carbon Reservoir ~= Atmospheric Carbon Reservoir

Global Distributions of Dissolved Organic Carbon

Marine Organic Matter

- Operationally defined:
 - High molecular weight organic matter
 - Low molecular weight organic matter
- Ultrafiltration (> 1000 Da)

Solid phase extraction (< 1000 Da)

High Molecular Weight Organic Matter Composition

Surface, North Pacific Subtropical Gyre

Low Molecular Weight Organic Matter Composition

Old, refractory material →

Metabolites

Amino Acids

alanine

Nucleic Acids

adenosine

biotin (Vitamin B₇)

Intermediates in Metabolic Pathways

"Secondary" Metabolites: defense, signaling

indole-3-acetic acid

Lipids

oleic acid

succinic acid

Organic Pollutants

Atrazine herbicide

DEET Insect repellent Polycyclic Aromatic Hydrocarbons (PAHs) Oil or incomplete combustion

Triclosan Anti-bacterial

Lindane pesticide

Polychlorinated biphenyls (PCBs) Various industrial applications

Chemical Constituents of Seawater

- Salts
- Carbonate system
- Nutrients
- Trace Metals
- Organic Matter
- Gases

Oxygen-Argon: Measuring the balance of between photosynthesis and respiration

Dimethylsulfide: Climatically active

 Gas produced by the degradation of a common phytoplanktonproduced molecule

 Can oxidize in the atmosphere providing cloud nucleation sites

Galí et al., 2018

Methane

- Potent greenhouse gas
- Originally thought to exclusively be produced in anoxic sediments
- Now known to be produced in the surface ocean by marine bacteria degrading

Conclusions

- Many marine chemical constituents including trace metals, nutrients, and the carbonate system underlie a delicate a balance that supports the productivity of the ocean
- Chemicals also act as tracers of physical processes occurring in the ocean including deep water circulation, inputs from hydrothermal vents, and upwelling
- The chemistry of the ocean is influenced by humans in many ways

Questions?