Marine Biogeochemistry 2: Nutrient limitation

Winn Johnson 1 August 2018 COESSING at University of Ghana

The Ocean is not Homogeneous

http://earthobservatory.nasa.gov/IOTD/view.php?id=6735

Marine microbial food web

Oak Ridge National Laboratory

Coccolithophores Visible in Satellite Images

Cyanobacteria Distributions

Physiological Requirements for these Nutrients

- N: amino acids / proteins
- P: nucleic acids, phospholipids
- Fe: nitrogenase, nitrate & nitrite reductase, photosystem I, cytochromes, superoxide dismutase
- Si: diatom frustules
- Co: carbonic anhydrase, required for Vitamin B₁₂
- Zn: carbonic anhydrase
- Vitamin B₁₂: methionine synthase

Nutrient Limitation in the Ocean

Strategies for adapting to oligotrophic conditions

- Reducing P
- Recycling Fe
- Replacing P with S
- Accessing organic matter
- Trading food for vitamins

Thalassiosira pseudonana reduces phosphorus stores

Möller & Hoose, 2011

Under P-limitation *T. pseudonana* reduces nucleotide concentrations

P-limited ratios also seen in the ocean

Kujawinski et al., 2017

Fe

"Give me half a tanker of iron, and I'll give you an ice age" -John Martin

Fe Recycling in Crocosphaera watsonii

Tropical diazotrophic cyanobacterium

Sohm et al., 2011

Requires Fe for Photosynthesis & Nitrogen Fixation

Neveu, 2011

Oldroyd & Dixon, 2014

Proteomic Analysis Finds that Enzymes are Degraded Daily Freeing Fe to be Used by Other Enzymes

Saito et al., 2011

Replacing P with S

Dyhrman et al., 2007

Phospholipid Synthesis Decreases with Lower Phosphate Concentrations

Phospholipids Replaced with Sulfur Containing Lipids

Table 1 Ratios of substitute lipids to phospholipids in phytoplankton cultures and environmental samples				
	SQDG/PG ratio, P-replete	SQDG/PG ratio, P-limited	BL/PC ratio, P-replete	BL/PC ratio, P-limited
Cyanobacteria				
Synechococcus WH8102	9.9 ± 2.0	120.5 ± 7.1	0†	0†
Synechococcus WH7803	10.3 ± 0.3	61.6 ± 15.4	0†	0†
Synechococcus WH5701	6.2 ± 0.5	132.0 ± 31.0	0†	0†
Prochlorococcus MED4	20.0 ± 1.3	34.1 ± 1.6	0†	0†
Crocosphaera watsonii	4.0	5.8	0†	0†
Trichodesmium erythreum	7.8 ± 1.0	18.5 ± 4.9	0†	0†
Eukaryotic phytoplankton				
Thalassiosira pseudonana	3.0 ± 0.9	394.8 ± 48.2	<0.01	>500§
Chaetoceros affinis	10.5 ± 3.6	26.3 ± 9.0	0.9 ± 0.2	27.8 ± 8.3
Emiliania huxleyi	<0.01*	<0.01*	0.7	1.3
Communities				
South Pacific	3.6 ± 0.8	NA	3.6 ± 1.7	NA
Sargasso Sea	NA	4.5 ± 1.1	NA	13.1 ± 4.0

Bold type indicates significant differences between phosphorus-replete and phosphorus-limited conditions as indicated by directional Mann–Whitney U-tests ($P \le 0.05$). Cultures were analysed in triplicate or greater except for *C. watsonii* and *E. huxleyi*, which were analysed once. In the South Pacific, five discrete samples of the total planktonic community (>0.2 µm) were collected and analysed; there were six samples from the Sargasso Sea. NA, not applicable; BL, betaine lipid; PC, phosphatidylcholine; SQDG, sulphoquinovosyldiacylglycerol; PG, phosphatidylglycerol. *SQDG not detected; analytical sensitivity is given. †BLs not detected and are not known to be produced by cyanobacteria. ‡BLs not detected; analytical sensitivity is given. \$PC not detected; analytical sensitivity is given.

Seeking Labile Organic Matter

American Scientist

Large Biopolymers

Sugars

Quorum Sensing

Using Signals to Coordinate Exoenzyme Production

Hmelo et al., 2011

Exchanging carbon substrates for vitamins

Thalassiosira pseudonana

Möller & Hoose, 2011

T. pseudonana grows when the heterotroph, *Ruegeria pomeroyi* is present

When *R. pomeroyi* is co-cultured with *T. pseudonana* it responds by consuming DHPS μ_{spins}

Durham et al., 2015

T. pseudonana produces DHPS

Durham et al., 2015

Conclusions

- Marine microbial distributions shaped by ocean chemistry
- Marine microorganisms adapt their physiology to respond to the chemistry of their environment
- Chemical distributions and microbial activity in the ocean are inextricably linked

Questions?