Pollution in the Lagos Lagoon, Nigeria

Ngozi Oguguah¹, Temitope Sogbanmu², Olalekan Isioye³, Olawale Awe⁴ and Christian Buckingham⁵

¹Marine Biology Section, Dept. of Fisheries Resources, Nigerian Institute for Oceanography & Marine Research, Lagos, Nigeria.

²Ecotoxicology and Conservation Unit, Department of Zoology, University of Lagos, Nigeria

³Department of Geomatics, Faculty of Environmental Design, Ahmadu Bello University, Zaria, Kaduna State, Nigeria.

⁴Applied Statistics, Department of Mathematical Sciences, Anchor University, Ayobo, Lagos, Nigeria

⁵British Antarctic Survey, Cambridge, United Kingdom

Date: August 4, 2018

Presented at COESSING 2018, University of Ghana, Accra, Ghana.

Background

- The Lagos Lagoon (LL) is the largest lagoon system in West Africa (WA) (Alo et al., 2014).
- Located between latitude 6°27′ to 6°48′N and longitude 3°23′ to 3°40′E.
- One of the most anthropogenically impacted lagoons in WA.
- Anthropogenic influences include;
 - shipping /port activities
 - petroleum tank farms
 - saw mills
 - pharmaceutical industries
 - coastal development

Justification

• The current use of ground *in situ* measurements have limited sampling and or observation points, and often suffer from large data gaps.

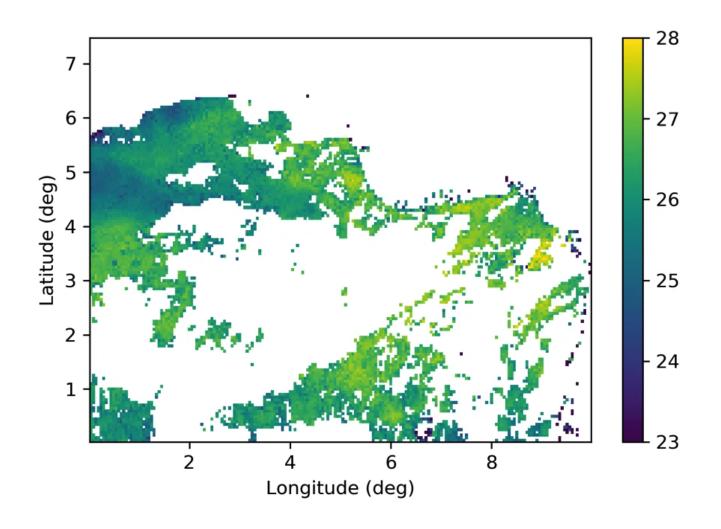
 Space based techniques which includes high spatio-temporal resolution, low cost (mostly free), and all weather capabilities are advantageous.

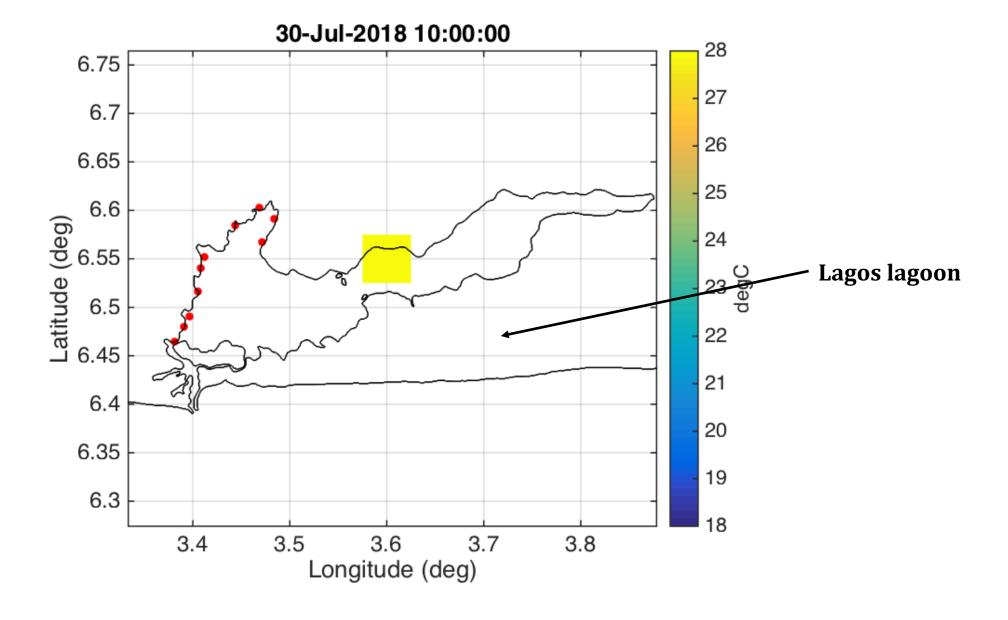
Objective

• To show the impact of polluting activities on the LL ecosystem over spatio-temporal time scales.

• To use satellite imageries/observations to provide spatiotemporal context to sparse in-situ measurements of heavy metals and hydrocarbon concentrations.

Methods & Results


• METHODS


- We obtained **geostationary satellite images** from the SEVIRI sensor onboard Meteosat Second Generation (MSG-2), (see supporting documentation),
- We used **Python® programming language** to demonstrate the capability of reading NetCDF files,
- We generated animation of **sea surface temperature (SST)** near Nigeria.

• RESULTS:

- Below, we show a **simple animation**.
- Each frame is 1 hr starting on 2018/08/02 at 00:00 UTC.

Animation Made within Python®

Figure 1: Station Locations - Estimates of Heavy Metals

Pollution in the Lagos Lagoon

Figures 2a-f: Anthropogenic Activities at Okobaba (2a-c) and Apapa (2d-f) Areas of the Lagos Lagoon, Nigeria

Source: Figures 2a (Ogunkoya, 2018), 2b (Adewuyi, 2017), 2c (Sogbanmu et al., 2017), 2d-f (Amaeze et al., 2015a)

Future Studies

- Obtain different satellite products and examine over Lagos Lagoon
 - Nigersat-2
 - Geosynchronous satellite (dt = 15 min), similar to MSG-2
 - Visible and infrared
 - https://directory.eoportal.org/web/eoportal/satellite-missions/n/nigeriasat-2
 - chlorophyll concentration MODIS, VIIRS
 - visible and infrared spectrum MODIS, VIIRS, Landsat 8
 - synthetic aperture radar (SAR) Sentinel
- The secondary set of satellites should provide measurements relevant to pollution (e.g. river run-off, sediment, oil slicks)

Use these data to place sparse in situ measurements into context

Acknowledgements

- Python® programming software available within the Anaconda distribution:
 - https://anaconda.org/anaconda

- The satellite data were obtained as follows:
 - Register an account at http://cersat.ifremer.fr/data/collections/o-si-saf (free and instantaneous)
 - Log on to the File Transfer Protocol (FTP) server at http://eftp.ifremer.fr
 - cd to the directory "cersat-rt/project/osi-saf/data/sst/l3c/seviri"
- We thank Stephane Saux Picart (Meteo-France) for helping with geosynchronous satellite data.

