Coastal Dynamics

Surface Gravity Waves, Estuaries & Types of Tide Gauges for the Coastal Ocean

Stephan Howden, University of Southern Mississippi Emily Shroyer, Oregon State University with some slides courtesy of Andrew Lucas, Scripps Institution of Oceanography

Waves in the Ocean

Properties of Waves

Wave Height (H)

Amplitude (A)

Wavelength (L)

Wave Steepness

Wave Period (T)

Wave Phase Speed c=L/T

Some Wave Field Characterization Terms

The ocean surface has waves of many different periods and wavelengths traveling in different directions. Some ways to characterize this wave field are:

- Significant Wave Height: H_{1/3}
 - Older: Average of the highest 1/3 of waves similar results to what a trained observer estimates as the wave heights
 - Newer: =4*standard deviation of surface displacement
- Dominant Wave Period: Wave period with most energy

Wave Generation by Winds

Conceptual Description of Wind Wave Development

- Wind begins blowing over calm water
- 2. Instabilities cause air pressure fluctuation
- 3. Air pressure fluctuations create small waves
- 4. Surface waves on ocean further perturb wind field, which leads to more wave development on the ocean surface
- 5. Wave-wave interactions lead to lower frequency waves

Wind Generation of Surface Gravity Waves

Wavewatch III- Surface Wave Forecast

- SO storms very energetic
- swell versus wind waves
- swell- long waves arrive first

http://polar.ncep.noaa.gov/waves/

Surface Gravity Waves

Surface Gravity Waves-- Wave Speed (c=L/T)

$$c = \sqrt{\frac{gL}{2\pi}} \tanh\left(\frac{2\pi d}{L}\right) \qquad \text{water depth}$$

Shallow Water Waves
$$\frac{d}{L} \ll 1$$

$$\tanh\left(\frac{2\pi d}{L}\right) \rightarrow \frac{2\pi d}{L}; c = \sqrt{\frac{gL \times 2\pi d}{2\pi L}} = \sqrt{gd}$$

Deep Water Waves
$$\frac{d}{L} >> 1$$

$$\tanh\left(\frac{2\pi d}{L}\right) \rightarrow 1; c = \sqrt{\frac{gL}{2\pi}} = \frac{gT}{2\pi}$$

Dispersion: Deep Water Waves $c = \sqrt{\frac{gL}{2\pi}} = \frac{gT}{2\pi}$

$$c = \sqrt{\frac{gL}{2\pi}} = \frac{gT}{2\pi}$$

Swell Period & Mean Direction

Sea Period & Mean Direction

Wave Shoaling

Waves become steep and can break which can cause long-shore and rip currents.

Breaking

Breaking Wave Height

surface waves break when the wave height is greater than 0.78 times the water depth

H>0.78*h*

Spilling Breakers

Spilling Breaker

- •foam, turbulence at crest
- •gently sloping beach
- •starts some distance from shore

Plunging Breakers

Figure 17.4 Steep, plunging breakers are the archetypical breaker. The edge of such breakers are ideal for surfing. From photo by Jeff Devine.

- •dissipated over short distance
- •variable slopes
- •shallower slopes/distant swell
- •wind-- collapsing breaker

Plunging Breaker

Surging Breakers

- •unbroken
- •steep slopes
- •waves run-up beach

What happens if a wave is incident at an angle to the shore (or the shore bends)?

$$c = \sqrt{gd}$$

What happens if a wave is incident at an angle to the shore (or the shore bends)?

$$c = \sqrt{gd}$$

©The COMET Program

Figure 17.2 sub-sea features, such as submarine canyons and ridges, offshore of coasts can greatly influence the height of breakers inshore of the features. After Thurman (1985: 229).

Refraction

Rip Currents

The Nearshore Environment

waves steepen \rightarrow begins to break \rightarrow rolling bores What happen to wave speed and height as waves shoal?

Rip Currents→Wave Set-Up

Wave Set-up

Variability in Breaking Zone will result in variability of the alongshore pressure gradient.

Rip Currents

Rip Current Structure

manmade & natural structures, topography, character of incident wave field, slope of the beach (steep=small surf zone= weak longshore currents)

Some Examples of Surface Gravity Wave Measurement Techniques

- Observers
- Pressure gauges in shallow water
- Buoys with accelerometers
- GNSS Buoys
- Acoustic Doppler Current Profilers
- Satellite Altimeters
- Satellite Scatterometers

II. Estuaries

Definitions...

An *estuary* is a semi-enclosed region influenced by both **fresh** water from the land and **salty** water from the sea.

Estuaries are thus regions of **property exchange** between the continent and the ocean.

The *unique dynamics* of estuaries control property exchange and transport and thus are critical to pollutant dispersal.

Estuaries provide many important *ecosystem services*, including habitat/nurseries for commercially valuable species, improve coastal water quality, support tourist actives, form the basis of many major shipping lanes.

Motivations...

Container ship in a US estuary

Many of the largest coastal cities are located where rivers meet the sea. Estuaries are major routes of transport and are often heavily influenced by human activities.

Motivations...

"After Blaze, Sewage Floods City Rivers" – New York Times 07/22/2011

Estuaries often receive intentional and unintentional discharge of effluent (sewage), industrial waste, storm water, and other pollutants.

Motivations...

Many commercially valuable fish, shrimp, crab species, etc. live or breed in estuaries. Also home to many birds and marine mammals. Human activities include fishing and tourism.

Estuary Classification: Geological

 Coastal plain estuaries were formed at the end of the last ice age. As the ice melted and the waters warmed, sea level rose. The rising seas invaded low-lying coastal river valleys. These valleys are usually shallow with gentle sloping bottoms. Their depth increases toward the river's mouth.

 Bar-built Bar-built estuaries are formed when sandbars build up along the coastline. These sand bars partially cut off the waters behind them from the sea. Bar-built estuaries are usually shallow, with reduced tidal action. Wind is frequently the most important mixing tool for the fresh and salt water.

Estuary Classification: Geological

 Tectonic: Tectonic estuaries are created when the sea fills in the "hole" or basin that was formed by the sinking land. San Francisco Bay is a good example of this type of estuary. San Francisco Bay

• Fjords: Fjords are valleys that have been deepened by moving glaciers. They have a shallow barrier at their mouth that limits exchange between the waters of the fjord and the sea. They are narrow with steep sides and usually straight and long.

Estuary Classification: Geological

 Delta:Delta estuaries are formed when rivers flow out into the ocean and the sediment load falls out as the velocity of the water decreases.

Estuary Classification: Hydrodynamics

River inflow volume R to Tidal inflow volume V: R/V

Schematic estuaries: Vertically homogenous

"Well-mixed estuary"

S₁<S₂<S₃<S₄<S₅<S₆

The Hudson River Estuary, New York City, USA

Schematic estuaries: Vertically stratified

"Salt wedge estuary"

S1<S2<S3<S4

The Rio de la Plata, Argentina

Idealized, tidally averaged, partially mixed estuary

Idealized, tidally averaged, partially mixed estuary

Idealized, tidally averaged, partially mixed estuary

III. Tide Gauges for Coastal Tidal Measurements

- Visual Sensors (tide poles and staffs)
- Mechanical Sensors (float buoyancy)
- Pressure sensors (diaphragm, bubble, piezoelectric, vibration, strain gauge)
- Acoustic sensors (air acoustic and water acoustic)
- Electromagnetic
 - Capacitive and resistive staffs,
 - Altimeter
 - RF sensors
 - GNSS receiver on buoys
 - ...

Tide Poles and Staffs

InSitu Level Troll 700 Pressure Sensor

General	Level TROLL 500
Temperature ranges ¹	Operational: -20-80° C (-4-176° F) Storage: -40-80° C (-40-176° F) Calibrated: -5-50° C (23-122° F)
Diameter	1.83 cm (0.72 in.)
Length	21.6 cm (8.5 in.)
Weight	197 g (0.43 lb)
Materials	Titanium body; Delrin nose cone
Output options	Modbus/RS485, SDI-12, 4-20 mA
Battery type & life ²	3.6V lithium; 10 years or 2M readings
External power	8-36 VDC
Memory Data records ³ Data logs	2.0 MB 130,000 50 logs
Fastest logging rate	2 per second
Fastest output rate	Modbus: 2 per second SDI-12 & 4-20 mA: 1 per second
Log types	Linear, Fast Linear, and Event

Sensor Type/Material	Piezoresistive; titanium
Range	Gauged (vented) 5 psig: 3.5 m (11.5 ft) 15 psig: 11 m (35 ft) 30 psig: 21 m (69 ft) 100 psig: 70 m (231 ft) 300 psig: 210 m (692 ft) 500 psig: 351 m (1153 ft)
Accuracy ⁴	±0.05% FS at 15° C ±0.1% FS at 0 to 50° C
Resolution	±0.005% FS or better
Units of measure	Pressure: psi, kPa, bar, mbar, mmHg, inHg, cmH2O, inH2O Level: in., ft, mm, cm, m
Temperature Sensor	Silicon
Accuracy	±0.1° C
Resolution	0.01° C or better
Units of measure	Celsius or Fahrenheit

Float Gauge

Fig. 50. Electric sight gauge, with metal stilling well.

Bubbler Pressure Gauge

Ultrasonic 2 way travel time measurement: Downward looking air acoustic measurement

Electromagnetic Sensors

Microwave radar measures 2way travel time between sensor and sea surface. High frequency waves filtered through software. Accuracy ~ +/- 1 cm.

GPS or GNSS Buoy

