
MITgcm/ECCO Gulf of Guinea Simulation

Ocean Modelling Group (OMG)
Evelyn Aboagye
Emmanuel Brempong
Patrick Dwomfuor
Cyril Amengor

Supervisor: Dimitris Menemenlis, Brian Arbric, and Joseph K. Ansong

August 10, 2019

Outline of Presentation

- Introduction
- Recap of the MITgcm
- Regional Gulf of Guinea Configuration
- Conclusion and Recommendation

Introduction

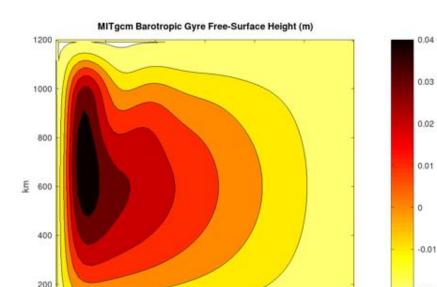
Underlining principles for driving an Ocean Model.

- ★ Grid.
- * Bathymetry.
- * Initial conditions (initial temperature and salinity).
- * Boundary conditions (atmospheric surface conditions and lateral conditions.)

Massachusetts Institute of Technology general circulation model (MITgcm)

The MITgcm is a numerical model designed to study and analyze the behaviours of ocean, climate and atmosphere. The following steps are involved in installing and running the MITgcm:

- * Before running MITgcm, you need a Linux or Unix -based operating system (OS).
- * Linux OS has a compiler called gfortran for compiling codes.
- * Download MITgcm from the link https://mitgcm.org.



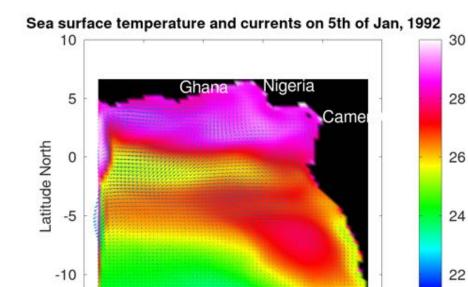

Figure 2: MITgcm

Figure 3: MITgcm tutorial

Running the Gulf of Guinea using MITgcm Model.

Limitations.

- * You need a good programming background.
- * In Octave and Python.
- * You need a computer with good processing speed.

Conclusion

- * We looked at the steps involved in running the MITgcm model.
- * We worked on a barotropic gyre test example.
- Finally, we carried out a numerical simulation on the Gulf of Guinea coast.

THANK YOU